在计算机视觉中,微调是利用预训练的视觉模型来执行下游任务的事实上的方法。但是,由于采用参数效率低下的全局更新并严重依赖于高质量的下游数据,因此在实践中部署它是非常具有挑战性的。最近,基于及时的学习添加了与任务相关的提示,以使下游任务适应预训练的模型,从而极大地提高了许多自然语言下游任务的性能。在这项工作中,我们扩展了这种显着的转移能力,从迅速的愿景模型中受益,以替代微调。为此,我们提出了参数有效的及时调整(亲调整),以使冷冻视觉模型适应各种下游视觉任务。实行调整的关键是基于及时的调整,即学习特定于任务的视觉提示,以使用预先训练的模型冷冻的下游输入图像。通过仅培训一些其他参数,它可以在基于CNN和基于变压器的各种架构上工作。广泛的实验证据表明,在广泛的视觉任务和场景中,主张表现优于微调,包括图像分类(通用对象,类失衡,图像腐败,对抗性稳定性和分布范围内的概括)和密集的预测任务例如对象检测和语义分割。
translated by 谷歌翻译
会话双语语言包括三种类型的话语:两个纯粹单色类型和一个内侧型代码切换类型。在这项工作中,我们提出了一个综合框架,共同模拟包括双语语音识别的单声道和代码交换机子任务的可能性。通过定义具有标签到帧同步的单个子任务,我们的联合建模框架可以条件地分解,使得可以仅获得或可能不切换的最终双语输出,仅给出单格式信息。我们表明,该条件分解的联合框架可以由端到端可分解的神经网络进行建模。我们展示了我们拟议模型在单语和代码切换的语料中对双语普通话语音识别的效果。
translated by 谷歌翻译
陆地温度(LST)是监控土地面过程时的关键参数。然而,云污染和空间和时间分辨率之间的权衡大大妨碍了对高质量的热红外(TIR)遥感数据的访问。尽管采取了巨大的努力来解决这些困境,但仍然难以通过并发空间完整性和高时空分辨率产生LST估计。陆地表面模型(LSM)可用于模拟高度的时间分辨率的Genpless LST,但这通常具有低空间分辨率。在本文中,我们向卫星观察和LSM模拟LST数据提供了一个集成的温度融合框架,以通过60米的空间分辨率和半小时时间分辨率映射Gapless LST。全局线性模型(GLOLM)模型和昼夜陆地表面温度周期(DTC)模型分别作为预处理步骤进行传感器和不同LST数据之间的时间归一化。然后使用基于滤波器的时空集成融合模型融合Landsat LST,适度分辨率成像光谱仪(MODIS)LST和社区土地模型5.0(CLM 5.0)-SIMUTION LST。在一个城市主导地区(中国武汉市)和自然主导地区(中国海河流域)实施了评估,在准确性,空间可变性和日颞动力学方面。结果表明,熔融LST与实际LANDSAT LST数据(原位LST测量)高于Pearson相关系数,在0.94(0.97-0.99)方面,平均绝对误差为0.71-0.98k(0.82-3.17 k )和根平均误差为0.97-1.26 k(1.09-3.97 k)。
translated by 谷歌翻译
Despite significant progress in object categorization, in recent years, a number of important challenges remain; mainly, the ability to learn from limited labeled data and to recognize object classes within large, potentially open, set of labels. Zero-shot learning is one way of addressing these challenges, but it has only been shown to work with limited sized class vocabularies and typically requires separation between supervised and unsupervised classes, allowing former to inform the latter but not vice versa. We propose the notion of vocabulary-informed learning to alleviate the above mentioned challenges and address problems of supervised, zero-shot, generalized zero-shot and open set recognition using a unified framework. Specifically, we propose a weighted maximum margin framework for semantic manifold-based recognition that incorporates distance constraints from (both supervised and unsupervised) vocabulary atoms. Distance constraints ensure that labeled samples are projected closer to their correct prototypes, in the embedding space, than to others. We illustrate that resulting model shows improvements in supervised, zero-shot, generalized zero-shot, and large open set recognition, with up to 310K class vocabulary on Animal with Attributes and ImageNet datasets.
translated by 谷歌翻译
Deploying reliable deep learning techniques in interdisciplinary applications needs learned models to output accurate and ({even more importantly}) explainable predictions. Existing approaches typically explicate network outputs in a post-hoc fashion, under an implicit assumption that faithful explanations come from accurate predictions/classifications. We have an opposite claim that explanations boost (or even determine) classification. That is, end-to-end learning of explanation factors to augment discriminative representation extraction could be a more intuitive strategy to inversely assure fine-grained explainability, e.g., in those neuroimaging and neuroscience studies with high-dimensional data containing noisy, redundant, and task-irrelevant information. In this paper, we propose such an explainable geometric deep network dubbed as NeuroExplainer, with applications to uncover altered infant cortical development patterns associated with preterm birth. Given fundamental cortical attributes as network input, our NeuroExplainer adopts a hierarchical attention-decoding framework to learn fine-grained attentions and respective discriminative representations to accurately recognize preterm infants from term-born infants at term-equivalent age. NeuroExplainer learns the hierarchical attention-decoding modules under subject-level weak supervision coupled with targeted regularizers deduced from domain knowledge regarding brain development. These prior-guided constraints implicitly maximizes the explainability metrics (i.e., fidelity, sparsity, and stability) in network training, driving the learned network to output detailed explanations and accurate classifications. Experimental results on the public dHCP benchmark suggest that NeuroExplainer led to quantitatively reliable explanation results that are qualitatively consistent with representative neuroimaging studies.
translated by 谷歌翻译
Medical image segmentation (MIS) is essential for supporting disease diagnosis and treatment effect assessment. Despite considerable advances in artificial intelligence (AI) for MIS, clinicians remain skeptical of its utility, maintaining low confidence in such black box systems, with this problem being exacerbated by low generalization for out-of-distribution (OOD) data. To move towards effective clinical utilization, we propose a foundation model named EvidenceCap, which makes the box transparent in a quantifiable way by uncertainty estimation. EvidenceCap not only makes AI visible in regions of uncertainty and OOD data, but also enhances the reliability, robustness, and computational efficiency of MIS. Uncertainty is modeled explicitly through subjective logic theory to gather strong evidence from features. We show the effectiveness of EvidenceCap in three segmentation datasets and apply it to the clinic. Our work sheds light on clinical safe applications and explainable AI, and can contribute towards trustworthiness in the medical domain.
translated by 谷歌翻译
Face forgery detection plays an important role in personal privacy and social security. With the development of adversarial generative models, high-quality forgery images become more and more indistinguishable from real to humans. Existing methods always regard as forgery detection task as the common binary or multi-label classification, and ignore exploring diverse multi-modality forgery image types, e.g. visible light spectrum and near-infrared scenarios. In this paper, we propose a novel Hierarchical Forgery Classifier for Multi-modality Face Forgery Detection (HFC-MFFD), which could effectively learn robust patches-based hybrid domain representation to enhance forgery authentication in multiple-modality scenarios. The local spatial hybrid domain feature module is designed to explore strong discriminative forgery clues both in the image and frequency domain in local distinct face regions. Furthermore, the specific hierarchical face forgery classifier is proposed to alleviate the class imbalance problem and further boost detection performance. Experimental results on representative multi-modality face forgery datasets demonstrate the superior performance of the proposed HFC-MFFD compared with state-of-the-art algorithms. The source code and models are publicly available at https://github.com/EdWhites/HFC-MFFD.
translated by 谷歌翻译
While inferring common actor states (such as position or velocity) is an important and well-explored task of the perception system aboard a self-driving vehicle (SDV), it may not always provide sufficient information to the SDV. This is especially true in the case of active emergency vehicles (EVs), where light-based signals also need to be captured to provide a full context. We consider this problem and propose a sequential methodology for the detection of active EVs, using an off-the-shelf CNN model operating at a frame level and a downstream smoother that accounts for the temporal aspect of flashing EV lights. We also explore model improvements through data augmentation and training with additional hard samples.
translated by 谷歌翻译
Seismic data often undergoes severe noise due to environmental factors, which seriously affects subsequent applications. Traditional hand-crafted denoisers such as filters and regularizations utilize interpretable domain knowledge to design generalizable denoising techniques, while their representation capacities may be inferior to deep learning denoisers, which can learn complex and representative denoising mappings from abundant training pairs. However, due to the scarcity of high-quality training pairs, deep learning denoisers may sustain some generalization issues over various scenarios. In this work, we propose a self-supervised method that combines the capacities of deep denoiser and the generalization abilities of hand-crafted regularization for seismic data random noise attenuation. Specifically, we leverage the Self2Self (S2S) learning framework with a trace-wise masking strategy for seismic data denoising by solely using the observed noisy data. Parallelly, we suggest the weighted total variation (WTV) to further capture the horizontal local smooth structure of seismic data. Our method, dubbed as S2S-WTV, enjoys both high representation abilities brought from the self-supervised deep network and good generalization abilities of the hand-crafted WTV regularizer and the self-supervised nature. Therefore, our method can more effectively and stably remove the random noise and preserve the details and edges of the clean signal. To tackle the S2S-WTV optimization model, we introduce an alternating direction multiplier method (ADMM)-based algorithm. Extensive experiments on synthetic and field noisy seismic data demonstrate the effectiveness of our method as compared with state-of-the-art traditional and deep learning-based seismic data denoising methods.
translated by 谷歌翻译
With the development of natural language processing techniques(NLP), automatic diagnosis of eye diseases using ophthalmology electronic medical records (OEMR) has become possible. It aims to evaluate the condition of both eyes of a patient respectively, and we formulate it as a particular multi-label classification task in this paper. Although there are a few related studies in other diseases, automatic diagnosis of eye diseases exhibits unique characteristics. First, descriptions of both eyes are mixed up in OEMR documents, with both free text and templated asymptomatic descriptions, resulting in sparsity and clutter of information. Second, OEMR documents contain multiple parts of descriptions and have long document lengths. Third, it is critical to provide explainability to the disease diagnosis model. To overcome those challenges, we present an effective automatic eye disease diagnosis framework, NEEDED. In this framework, a preprocessing module is integrated to improve the density and quality of information. Then, we design a hierarchical transformer structure for learning the contextualized representations of each sentence in the OEMR document. For the diagnosis part, we propose an attention-based predictor that enables traceable diagnosis by obtaining disease-specific information. Experiments on the real dataset and comparison with several baseline models show the advantage and explainability of our framework.
translated by 谷歌翻译